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Abstract 

The decay of a meta-stable phase through nucleation of bubbles of the 

true-vacuum phase can occur at non-zero temperature through classical ther- 

mal activation, with the rate per volume ‘P oc exp(-Fo/kBT), where Fc is 

the free energy for a critical bubble and T is the temperature. In this pa- 

per we calculate order h corrections to this rate. These corrections represent 

processes where the field tunnels through the potential barrier starting from 

a state of free energy F < Fo, and provide a smooth interpolation between 

the high-temperature and zero-temperature decay rates. We confirm that the 

quantum corrections are of the same order as the classical results at large T. 
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I. INTRODUCTION 

Since the discovery of symmetry restoration at high temperatures’ and the possibility 

of phase transitions in the early Universe, problems related to the decay of a metastable 

state in quantum field theory have received a lot of attention in view of the many different 

cosmological implications. Such is the case for first order-phase transitions, which have 

the most interesting and drastic influence on the history of the early Universe.s In this 

case a met&able state is separated from the ground state of a theory by a potential 

barrier, and the decay is due to the creation and subsequent expansion of bubbles fdled 

by the true ground state. The probability of the formation of bubbles of the new phase 

at zero temperature was found in Refs. 3 and 4, while in the high temperature limit 

it was found in Ref. 5. However, there has never been a complete description for field 

theory valid in all ranges of temperatures comparable to the description for the quantum 

mechanical problem of tunnelling as discussed by Affleck and Langer.6 

At zero temperature bubble creation is due to the subbarrier tunnelling of the relevant 

mode describing the order parameter. Boundary conditions dictate that the total energy 

change in this process is precisely zero. The gain in volume energy has to be compensated 

for by the surface tension. At high temperatures the decay is due to classical fluctuations 

over the barrier. There is no restrictions on the total energy of the bubble, so the 

dominant contribution is from the saddle point configuration corresponding to the lowest 

point on the barrier. Clearly, at moderate temperatures both processes should be present. 

Namely, not only the fluctuations with change in the free energy sufficiently large that the 

fluctuation can classically overcome the barrier, but bubbles with smaller free energy that 

may tunnel through the barrier. The smaller bubbles are present in the thermodynamical 

ensemblein even greater proportion in accordance with the Hibbs distribution. In general, 

even in the semiclassical treatment of the problem, we have to integrate over all subcritical 



bubbles. By subcritical we mean bubbles which are classical in all respects and differ only 

in the value of their free energy. It is the interplay between the Hibbs distribution and 

the tunnelling exponent that eventually determines the field configuration dominating 

the decay rate. 

The full treatment would be a complicated problem, so we reduce it to the case where 

the thin-wall approximation for the field configurations describing the bubbles is valid. 

Then, in the semiclassical approach the only dynamical variable which remains is the 

radius of the bubble, and as we shall show at finite temperatures the tunnelling process 

can be described in the framework of one--dimensional quantum mechanics of bubbles 

similar to the zero temperature case of the Ref. 4. The main difference turns out to 

be that it is the free energy, not the energy, of the bubble that is the integral of the 

motion in the thermal bath. The negative of the pressure in the two phases (or the 

finite-temperature effective potential) enters the relevant equation in the same way as 

the energy density at zero temperature. We believe the assumptions made in deriving 

these results are valid when considering subbarrier motion of the bubble. It is interesting 

to note that in the thin-wall approximation for some range of temperatures all subcritical 

bubbles give compatible contributions to the decay probability. 

While our work was in progress, we became aware of work by Hsu,r in which he 

also considers quantum tunnelling at finite temperature. Our main conclusions agree 

with Hsu. However in some important point our results are different. In estimating the 

tunnelling rate Hsu integrates over the energies of subcritical bubbles, rather than the 

free energies as in our approach. He does not calculate the tunnelling amplitude at a 

given finite energy, but uses the relevant rate for a 1 + l-dimensional Abelian Higgs model 

found in Ref. 8, while our results are valid in any model in the thin-wall approximation 

in (3 + 1) dimensions. 

In Sec. II we review the zero temperature tunnelling problem and find the tunnelling 
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exponent for the bubble of non-zero total energy. Such a bubble can not appear sponta- 

neously in vacuum, but can be relevant to some processes at finite energies. In Sec. III we 

construct the quantum mechanics of thin-wall bubbles at finite temperatures and calcu- 

late the decay probability in the semiclassical approximation. In the appendix we apply 

our the results to a model situation that reflects the case when the thin-wall approxima- 

tion is valid at zero temperature, and consequently is an even better approximation at 

high temperatures. 

II. ZERO-TEMPERATURE TUNNELLING 

Our goal is to calculate the nucleation rate (per volume) of bubbles of true vacuum 

within a homogeneous region of false vacuum. In this section we review the derivation 

of the zero-temperature tunnel action in the thin-wall limit. The types of models we 

consider have a meta-stable “faJse-vacuumn state at 4 = &, a ‘true-vacuum” state at 

4 = d+, and a barrier separating the minima with a local maximum at 4 = 4~. 

A. ZERO ENERGY TUNNELLING 

As is well known, the probability per unit volume for the nucleation of a bubble 

of true vacuum is P = AemBl”, where A is a prefactor of mass dimension 4 and B 

is dimensionless. Transition to the true vacuum state by quantum tunnelling occurs 

through the nucleation of bubbles of the energetically favored phase (4 = ++), which 

then expand outward, asymptotically approaching the velocity of light. 

Tunnelling is associated with a classical motion in imaginary time, with B given by 

the Euclidean action SE: 
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B = SE = /d+z [; (2) + ;(@)‘+ v(d)], 

where tE is Euclidean time, and 4 is a solution to the Euclidean equations of motion 

with boundary conditions dd(O, Z)/dtE = 0, and d(Ttco, 2) = &. 

All possible solutions to the Euclidean equations of motion satisfying the above bound- 

ary conditions contribute to the transition. However, the solution with the least action 

makes the largest contribution to the transition. At zero temperature, in the absence of 

seeds for nucleation, the least-action solution has O(4) symmetry, in which case 4 is a 

function only of rz = t% + lx’ls, and the Euclidean action is 

SE = 2x2/o-r’dr [; (z)‘+ V(4)] , 

with 4 a solution to the O(4)-symmetric Euclidean equations of motion 

sd 3& dV(d) o 

=+;jy-= 7 

dd 

(2.3) 

with boundary conditions dd(O)/dr = 0 and d(+w) = d-. 

Closed-form analytic solutions to the Euclidean equation of motion cannot be found. 

However a simple approximation can be found in the thin-wall approximation where the 

difference in potential between the false and true vacuum states are small compared to 

the maximum height of the barrier separating them. In the thin-wall limit the “friction” 

term in the equation of motion, r -‘dp$/dr, can be neglected, and the solution is d4/dr = 

-&%&$ ; r = S’dVI~~ , where vO(4) is the potential in the limit of exact 

degeneracy. In the thin-wall limit the solution has the form 

c#J(r) = $Zw(r) f 2 

{ 
(2.4) 

d- r >> R 

where &w(r), the solution to the Euclidean equations of motion neglecting friction, 

depends upon G(4). 
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Thus, in the thin-wall limit the O(4) Euclidean action can be expressed in terms of 

the bubble radius R: 

SE = 2&f+ d4m - 2a’$AV. 

The origin of the two contributions to the action are clear: The second term is a volume 

term and the first term is a surface term with 

(2.6) 

playing the role of the surface tension. The radius of the bubble that results in the least 

action with O(4) symmetry, &, can be found by extremizing the action with respect to 

R: 

R, = 3S,/AV. (2.7) 

This results in a Euclidean action 

SE = x=&R32 = 27s2S,4/2(AV)3 = n’AVR36. (2.8) 

At non-zero temperatures the U(4) mvariance of the least-action solution will be 

broken. The easiest way to handle this situation and calculate quantum corrections to 

thermal activation is to consider the (Lorentzian) quantum mechanics of the motion of 

thin-wall bubbles. The quantum nucleation process will be treated by considering a 

one-dimensional tunnelling problem with the bubble radius R playing the role of the 

dynamical variable. 

B. FINITE ENERGY TUNNELLING 

The Lorentzian equation of the motion of the bubble in vacuum is4 

E = -FAVRs + 
47rS, R2 

diTF’ 
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where R’ E dR/dt is the derivative of the bubble radius with respect to the time co- 

ordinate in the rest frame, and E is an integral of the motion representing the total 

energy of the bubble. E = 0 for the bubble described in Sec. HA, but we will consider 

a generalization of the description to include non-zero E. We will take Eq. (2.9) as 

the Hamiltonian constraint H( R, R’) = E. The corresponding Lagrangian is given by9 

L = R’ J(R’)-2H( R, R’) dR’, or 

L = (4x/3)R3AV - 4nStRZ~~. 

Now, the standard relations complete the definition of the Hamiltonian system: 

PR = dL/dR’ = 4xS1R2H(1 - @)-‘I’, 

H(P,q,R) = -(47r/3)AVRs + 4P;: + (47rSlRz)z . (2.11) 

We can consider the function V(R) E H(PR = 0, R) = -(4s/3)AVRs + 47rSlRZ as 

the potential in a one-dimensional bubble motion problem. This potential is shown in 

Fig. 1. At 0 5 E < Y,, there are two branches of classical evolution corresponding 

to 0 < R < RI and Rz < R < an, where RI and Rz, the classical turning points, are 

solutions to Eq. (2.9) with R’ = 0. The tunnelling probability between these states is 

given by P(E) cc e-B(E)ln, with B(E) = 2J2,‘&dR along the bubble wall trajectory 

with PE the Euclidean momentum. Making use of Eq. (2.11) and substituting R’ from 

Eq. (2.9) rotated to imaginary time, we find 

B(E) = 2k; ~[~x&R~] - [E + (4rr/3)AVR3]’ dR. 

It is convenient to introduce the dimensionless variables 

(2.12) 

R&s E 
AV’ w = 4*&G’ 

z = R/h. (2.13) 



Note, that Rc is simply the bubble radius for the O(4) symmetric bubble found above 

[cf. Eq. (2.7)]. With these definitions the integral Eq. (2.12) can be rewritten as 

B(E) = 8xS,R3(w), 

Z(w) G l; J (z’ + 23 + w)(z’ - z3 - w) dz, (2.14) 

where I, and zs are roots of the equation z3-zs+w = 0. For tunnelling with zero energy, 

Z(0) = r/16, and B(0) = SE = 7r*Sr~/2, which reproduces the result of Eq. (2.8). This 

gives the probability of the creation of the true-vacuum bubble from “nothing” (note that 

zr = 0 in this case). At sufficiently high energy, corresponding to w = WC = 4/27, we 

have zr = zs so that Z(wo) = 0, and the transition may be realized by a purely classical 

motion. For 0 < E < EC s 16nSrg/27, ‘P(E) N exp[-B(E)/fi] gives the probability of 

tunnelling between the two possible branches of classical evolution R < RI and R > Rz. 

We have calculated numerically the integral Z(w), Eq. (2.14). The result is presented 

in Fig. 2. We see that with sufficient accuracy it can be represented by a linear function”’ 

Z(w) N ; (1 - TU) . 

This gives (recall that EC = 16~&%/27) 

(2.15) 

(2.16) 

This expression for B(E) can be extended beyond the thin-wall approximation with EC 

equal to the sphaleron energy: 

B(E) = sE[l - f(E)EIEcl, (2.17) 

where f(Ec) = 1. What we have shown here is that in the thin-wall approximation 

f(E) N 1 for all E < EC. 
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III. BUBBLE NUCLEATION IN A THERMAL BACKGROUND 

Finite-temperature tunnelling will be similar to finite-energy tunnelling, with thermal 

energy playing the role of the non-zero initial energy. In calculating the tunnelling rate 

at zero temperature but with non-zero total energy of the field configuration, one must 

specify the probability of the initial configuration. However, in thermal equilibrium the 

probability for any configuration is simply proportional to the Boltzmann factor. Now 

let us consider tunnelling at finite-temperature, starting with the standard prescription 

and including the effect of mixing classical thermal activation with quantum tunnelling. 

A. THERMAL ACTIVATION 

The formal generalization of the zero-temperature results to finite temperature is 

straightforward. The quantum statistics of bosons at finite temperature is equivalent 

to the theory in Euclidean space with fields periodic in Euclidean time with period in 

h/ksT (antiperiodic boundary conditions for fermions). Thus, the thermal background 

in general can break the O(4) symmetry of the minimal action because the solution 

becomes periodic in the Euclidean time direction. 

With the above boundary conditions the Euclidean action becomes 

SE = ln’kBTdtE /d3z [; (-$)‘+; (%$)‘+ v’(4)] , (3.1) 

where VT(~) is finite temperature effective potential which accounts for interactions of 

the 4 field with the thermal background. To find the least-action bubble we have to 

replace the O(4) symmetric solution of Sec. HA by a generic O(3)symmetric bubble. In 

the limit that the radius of the bubble is much larger than h/kBT, d will be independent 

of tE, and B/Ii - F/kBT where F is the free energy of a spherical bubble: 

8 



with .$ the solution to the Euclidean equation of motion d$b/dzz+(2/s)d4/dz-dVT/dq5 = 

0 with boundary conditions d(co) = 0 and d4(O)/dz = 0. 

In the thin-wall approximation 

(3.3) 

where again &(T), given by Eq. (2.6) but with VO(~) being replaced by VT(~), playing 

the role of the surface tension, and the second term is a volume term. Note also that 

even in thin-wall approximation at small temperatures AVT receives two contributions. 

Not only does it account for the difference in minima in the zero temperature potential 

energy, but it will also include a contribution if there are different numbers of massless 

particles in the two phases (which in fact is the generic result). To see this, recall that 

the finite-temperature result for the standard potential V,(4) = (X/4)(& - 4;)’ is 

+ JI JmdzzZIn ( I - exp [-,/zs + (-A+ + 3x4s) /TZ]} , 
2as 0 (3.4) 

where VI(+) is the zero-temperature l-loop potential. At high temperature, the T- 

dependent part contains a term -&‘*/90, which is just the negative of the pressure 

of a massless particle. If particles have different masses in the two phases, or different 

numbers of massless particles in the two phases, there will be a pure “thermal” pressure 

difference. In general, VT(~+) is equal to the negative of the pressure in the favored 

phase, p+, accordingly VT(~-) = -p-, so that A& = p+ - p- E Ap > 0. 

Minimalization of the free energy with respect to R in the case when (3.2) is valid 

yields the radius, &, of the O(3) “time-independent” bubble (sphaleron) and the corre- 

sponding value for Fc: 

fk = ~SL(T)/AVT 

Fc = (4x/3)R;S,(T) =(16x/3)S,(T)3/(AVT)Z, 
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Thus, in the high-temperature limit 

(3.6) 

where Fc is the activation energy of the critical bubble, or in modern parlance, the free 

energy of the sphaleron. 

B. QUANTUM CORRECTIONS 

Now we include the quantum corrections to the classical thermal activation picture. 

The basic idea is that in addition to the classical probability that a thermal 5uctuation 

will have enough free energy to make a critical bubble, thermal fluctuations with smaller 

free energy can tunnel through the barrier. Thus, tunnelling is a combination of ther- 

mal energy to get part way up the barrier, and quantum tunnelling to get through the 

remaining barrier. To calculate this we generalize the zero-temperature, finite-energy 

tunnelling formalism developed in the previous section. 

Let us start by deriving the equations for the bubble motion in a thermal background. 

The motion of the bubble wall specifies a certain (three-dimensional) hypersurface C in 

the four-dimensional space time. Let us introduce the coordinates {I’} on this hypersur- 

face, together with the coordinate n measured in the direction of the outward normal, so 

that 

ds2 = -dn2 +3sijdz’dzj. (3.7) 

These coordinates are called Gaussian coordinates. Let T> be the components of the 

stress-energy tensor in terms of the Gaussian coordinates. We can write the total stress- 

energy tensor as 

T: = S>J(n) + T>(out)B(n) + T”p(in)B(-n). (3.8) 
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One may interpret this relation as the definition of the bubble wall tension tensor Se,. 

Conservation of the energy momentum tensor, T< ;o = 0, gives 

S”, = 0, 

sl-b. ;p + [T”,] = 0, (3.9) 

where (2’1 = T(out) - Z’(in). The first equation in (3.9) tells us that only the three 

dimensional tensor Sji could be non-zero. The second equation results in the system of 

equations: 

S’i ;j + [T:] = 0, 

-SJir’nj + [TE] = 0. (3.10) 

The Christoffel symbols l?Cj can be found in the following way. Let N” be the components 

of the outward normal in Gaussian coordinates: N” = 1, N’ = 0. Then l?ij = N’;j. 

Let the hypersurface ‘: be defined in any other coordinate system {y”} by the equation 

n(y’) = 0. The components of the outward normal in this system are NP = -n,,, (YLEn. 

Then the expression for rij can be found in terms of the function n(y”); see, e.g., 

Ref. (11). Equations (3.10) determine the form of the hypersurface C and, consequently, 

the evolution of the two-dimensional phase separation boundary of arbitrary shape for 

arbitrarily specified energy-momentum tensors. 

For our purposes we shall make following assumptions: Both inside and outside the 

bubble the energy-momentum tensor of the medium is that of a perfect fluid: 

T: = (p + p)u”u,, - ~6”~. (3.11) 

When the shell moves through the medium, the contribution of particles bound to the 

bubble wall leads to S’s # So, and So0 # 0,” and there is a non-trivial outflow and inflow 

of particles. Both effects can be very important in different applications. However, when 
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considering the process of bubble creation, i.e., the motion of the virtual bubble, we can 

assume that the structure of the stress energy tensor of the bubble wall is the same as 

in vacuum, s’j = &(T)6’, (one can show that this structure is a property of a wall 

constructed only from the classical field 4”) and that there is no coherent motion of 

the medium in the rest frame. That is, for the velocity of the medium relative to the 

shell we have uP(in) = u,,(out). Also, assume that there is no entropy creation and the 

temperature both inside and outside of the bubble is the same, i.e. (~+p)]r,, = (~+p)l~~~. 

With these assumptions we have [T”,] = ApP,. Then the first equation of F!& (3.19) 

gives &(T) = constant, and the second becomes 

-&(T)N” ;,, + Ap = 9. 

For the spherically symmetric bubble we can define the coordinate n by 

n = [r - R(r)]/(l - R*)r/s, 

(3.12) 

(3.13) 

where r is the radial coordinate in spherical polar coordinates, y“, in which the 4-interval 

takes the form ds’ = dt’ - dr2 - r’dfl’. With this definition N@ = -a,n],=,(,) is the unit 

normal vector, N*N,, = -1. We have N@ in = &No-2Nr/R, where N, = -l/(1 -&)1/s, 

No = R/(1 - ds)‘/*. Using the identity R&Ns = -&NV, we can rewrite the equation of 

motion (3.12) in the following way: 

&(T)&(R*N,) + ApR’R = 0. (3.14) 

This equation admits the first integral 

F r -+Ap+ 4js’F$2 . (3.15) 

The structure of this expression is precisely the same as the structure of Eq. (2.9), but 

with Ap now including the thermal pressure. Since the pressure is the negative of the 

“free energy density,” it is the free energy of the bubble, F, which is the integral of the 
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motion in a thermal background, not the energy E. At any fixed F the picture of classical 

and sub-barrier motion of the bubbles will be the same as was described in Sec. IIB, with 

the replacements 

E + F, 

AV -+ Al+ s Ap, 

Sl -+ 4(T). (3.16) 

Let us now consider the decay of a metastable state. The number density of bubbles 

with F is proportional to e-FlkaT, and the total probability of producing a new phase 

bubble is 

Pm m 
J 0 

e-Ffk%TP(F) /J,” eeFlkBTdF (3.17) 

The bubbles may be of two types, sub-critical bubbles with F 5 Fc, which must tunnel 

through the barrier RI < R < Rz with probability P(F < Fc) = ~&e-~(~)/‘, or critical 

bubbles with F > Fc, which may classically evolve with a probability ‘P(F > Fc) = 

AT N 1 (independent of ti). Following the discussion in Sec. IIB, Fc = 16rSl(T)G/27 

and RT = 3S,(T)/AV’. Note that RT need not be the radius of the O(4) zero- 

temperature bubble (R4 = 3Sr/AV), nor is it the radius of the O(3) bubble (J7.c = 

2&(T)/AVr). Since RT = 3Ro/2, it is simple to express Fc in terms of Rc: Fc = 

(4x/3)R&S,, exactly the result of Eq. (3.5). 

The probability is naturally divided into a quantum part for F 5 Fc, and a classical 

part for F 2 Fc: P 0: Ph + PT, where 

Pfi = AhAFce -FfkaTe-WdF)lh dj’ I/ O” ,e,-F/ksTdF 

pT = AT kr .-F~keTdFl~me-Ffk~~dF = ATe-FCfT. (3.18) 

Pr is simply the standard result of Eq. (3.6), a purely classical expression (independent 

of ti), while PA represents the probability that a sub-critical 5uctuation tunnels through 
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the barrier. It is inherently quantum mechanical, as it vanishes in the fi + 0 limit. The 

function &(F) can be obtained from E(E), defined in Eq. (2.16), after the replacements 

of Eq. (3.16). 

We have 

F/kBT + BT(F) = F/kBT + BT(O) (I- F/PC) 

= BT(O)+F 
Bd") 

&--, , 

where again &(O) = ST E ~‘Sr(T)R$/2. Th e integral for Ph can then be evaluated 

directly, with result 

pn a Fcl;;F!;Tln [&h _ e-F’IkBT] . (3.20) 

As expected, this is a quantum result; it vanishes in the fi -+ 0 limit. 

Notice that ST/(Fe/T) = (27n/32)R~T, so T = 32/27nR~ sets the scale for the high- 

temperature approximation. We will examine Ph in three different regimes, depending 

upon the value of RTT. 

Lou, temperatures (RTT < 1): The bubble with F = 0 dominates the integral, and 

Ph cc exp(-ST/h). From Eq. (3.15) we see that the trajectory of this bubble is defined by 

RR = 1 - (Rr/R)‘, i.e., it is O(4) invariant in imaginary time. This agrees with Linde’s 

prescription to use the O(4)-invariant solution with the temperature corrected effective 

potential until the bubbles nearly start to overlap in imaginary time.5 These bubbles are 

in all respects the same as the zero temperature O(4)-invariant bubbles except AV is 

replaced by AVT = Ap. This part of the expression survives in the low temperature limit 

and smoothly goes over to the zero-temperature result. 

High temperatures (RTT >> 1): The bubble with F N Fc dominates the integral, and 

P, (x fi exp(-Fc/kBT). Thus, in the high-temperature limit, the quantum contribution is 

as large as the classical thermal activation. This result can be easily understood. Namely, 
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at high temperatures both thermal activation and quantum tunnelling contributions are 

saturated by the sphaleron solution. 

Intermediate case (RrT N 1): All subcritical bubbles with 0 < F < Fc are nearly 

equally important, see Eq. (3.19), and must be accounted for if B(0) 5 lo*. This is 

a consequence of the fact that in the thin-wall approximation f(F) z 1. It is in this 

intermediate regime where our results may significantly change previous results. 

Actually, f(F) # 1. In some models where the thin-wall approximation is invalid, 

f(F) can differ significantly from f(F) .Z 1. If ds[F/k~T + B(F)]/bF < 0 (which is 

in fact the case in the thin-wall approximation but with a small deviationi of B(F) 

from the linear law, Eq. (2.15)), then either O(4) invariant bubbles will dominate the 

decay probability, or the sphaleron does. The transition between those two regimes now 

is even steeper than in the thin-wall case when in the intermediate regime all subcritical 

bubbles were important. If P[F/~BT + E(F)]/dsF > 0, then at some intermediate 

range of temperatures there will exist field configuration which will dominate the decay 

probability, which are neither 0(4)- invariant, nor strictly time independent. Rather, as a 

function of temperature it will interpolate in between these two limits. This configuration 

would be a solution to the equation l/kBT + dB/dF = 0. Since dB/dF = -7, where 

r is the period of subbarrier motion between turning points, we see that the extremal 

configuration would obey the standard periodicity requirements on the fields in a thermal 

bath. 

IV. DISCUSSION AND CONCLUSIONS 

In this paper we have done several things: 1) We have shown how to calculate the 

decay probability of a metastable state that interpolates between the high-temperature 
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limit and the zero-temperature limit of previous calculations. This result is given in 

Eq. (3.20). Note, that the result obtained indicates that in an intermediate range of 

temperatures there can be significant contributions to the prefactor due to subcritical 

bubbles, at least in the thin-wall approximation. A proper treatment must incorporate 

the prefactors from the very beginning, which was not done in the present paper. 2) 

We have shown that in agreement with Hsu, but contrary to naive expectation, even 

at high temperatures the quantum contributions to tunnelling are just as important (at 

least in the exponent) as the classical thermal activation result. 3) We have pointed out 

the the correct formalism uses the free energy, not the energy, to calculate the quantum 

probability. 

APPENDIX 

As an example, let us consider a scalar field system, which at zero temperature has an 

effective potential with two nearly degenerate minima such that the thin-wall approxima- 

tion is valid. With increasing temperature the pressure difference becomes even smaller, 

until at the critical temperature, Tc, both minima are degenerate. So the thin-wall ap- 

proximation should be valid up to Tc if it is valid at T = 0. Some particles obtain mass 

from coupling to the scalar field acting as the order parameter of the phase transition. 

If the mass of the lightest of these particles is sufficiently smaller than Tc. then in both 

minima the only temperature dependent contribution is proportional to T4 due to the 

pressure of the massless particles. Recall that the effective potential is the negative of 

the pressure, and if the number of massless degrees of freedom is different in the two 

phases, we can not neglect their contribution in calculating the decay rate. The pressure 

is given by p = -V + xZNT4/90 . It is equal in both phases at the critical temperature 
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defined by the condition 

-AV + xzN-T;/90 = r’N+T;/90, (A.l) 

where N- and N+ are numbers of effectively massless degrees of freedom in the symmetric 

and the broken phases respectively, and N- > N+. We have AV/T$ = n’AN/SO, and 

Ap = AV - nZANT4/90 = AV [l - (T/Tc)4] . (A.21 

Consequently, 

s, = B=(o) = E(o) [l - (T/Tc,‘]-~ 2 

FC -= 
T 27*&$?T(o) _= y$ [l- &‘I-‘, 

where 

A f 27*Tc& 32 = ; ( N-5yN+)“4 B(0)‘/4. 

(A.3) 

(A.4) 

The natural value for A would be A NU 5 to 10, which corresponds to B(0) N 10’ and 

N- - N+ N 10 to lo2 . The temperature dependence of P%(T)/?+(O), plotted with the 

use of Eq. (3.20) is shown in Fig. (3). Notice the unusual temperature dependence of the 

result. 
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FIGURE CAPTIONS 

Fig. 1: The potential V(R)/47r&g as a function of zz = R/R,,. 

Fig. 2: The integral I(w) of Eq. (2.14). The dashed I’ me is the analytic approximation 

to the integral, Eq. (2.15). 

Fig. 3: The temperature dependence of Ph(T)/‘Ph(O) plotted with the use of Eq. 

(3.20) in the case when both minima of the potential are almost degenerate at zero 

temperature. 
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